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COMPETEHVE STABILITY UNDER WEAK GFORS S'^STIIUTABILITY: 

NONLINEAR PRICE ADJUSOMENT AND ADAPTIVE EXPECTATIONS 

by 

Kenneth J. Arrow and Leonid Hurwicz i   "J        ( 
Stanford University and the University of Minnesota    V ■ \ ct--^c\, 

1.  Introduction. 

In earlier papers by the authors {\)\\,  pp. 5^5-^9),  and in collabora- 

tion with H. D. Block ([l], pp. 95-104), the global stability of the compet- 

itive equilibrium was studied in the case where all commodities are gross 

substitutes, that is, d? /dp    > 0 for all J ^ k , where F, is the 

excess demand for commodity j and P  is the price of commodity k . 

Two dynamic systems were considered: one a linear system in which the 

price of each commodity moved proportionately to its excess demand, and 

the other a more general nonlinear system in which the rate of change of 

each price was a sign-preserving function of the excess demand (in both 

cases, with the possible exception of a numeraire). For both systems it 

was demonstrated that global stability held In the strong sense that for 

any arbitrary starting point the prices converged to a limit which was 

necessarily the competitive equilibrium point (which was unique up to a 

proportionality factor under the asBumptiöns made).  For the latter system, 

the proof of convergence depended upon showing that the "maximum norm," 

Work done with the partial support of a grant from the Rockefeller 
Foundation to Stanford University for mathematical research in the social 
sciences. 
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max| (Pk / Fk) - l|  , 

where P Is an equilibrium vector, was necessarily decreasing so long 

as prices were not at equilibrium. 

Subsequently, the stability of nonlinear adjustment processes was 

studied by Uzawa [15J and McKenzie [lr j for the case of weak gross 

substitutes, i.e., where dF / dp > 0 for j ^ k . In this case, the 
J     K = 

equilibrium may not be unique up to a proportionality factor, but it has 

been shown by McKenzie ([12], Theorem l) that the set of equilibria must 

form a convex set (see also [2],  Theorem 2). Both Uzawa and McKenzie made 

assumptions which implied that there exists at least one equilibrium vector 

positive in all components. Uzawa assumed that the rate of change of each 

price (r Jier than the numeraire, if any) was a monotone Increasing function 

of excess demand which vanishes for zero excess demand, a more restrictive 

dynamic system than that considered in [l]; McKenzie assumed that the rate 

of change of each price (again other than a possible numeraire) was a 

function of ail prices which, however, had the same sign as the excess 

demand. Both proved that their respective processes had the property that 

Uzawa called "quasi-stablllty" ([16], pp. 3-U):  the price movement starting 

from any initial point is always bounded, and the distance from the moving 

point to the pet of equilibria approaches zero  Equlvalently, the second 

part of the definition can be replaced by the condition that every limit 

point of the path is an equilibrium.  This Is a weaker property than 

convergence to 1 1lmit along any path, which we have called (global) 

stability, 

*    ; 
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In this paper, we shall consider McKensle's dynamic system, which la 

the most generaJ yet proposed., and demonstrate that If there exists at 

least one strictly positive equilibrium, then the path defined by the 

dynamic system from any starting point will converge to a limit which, of 

course, must be an equilibrium. Ihls theorem Is stronger than McKenzie's 

in the sense that the type of stability proved is somewhat stronger.  The 

method of proof Is somewhat novel, though related to the methods of [l] 

and of Uzawa [15]. 

The results are extended to the case where current excess demand 

depends upon expected future prices as well as current prices. It is 

assumed that all commodities, present and future, are weak gross sub- 

stitutes, and that expectations about future prices are formed from 

present and past prices according to the principle of adaptive expecta- 

tions used by Cagan [7], Friedman f9], pp. 143-152, and Nerlove [13] in 

empirical studies.  This hypothesis requires that expected price be changed 

at a rate proportional to the difference between current actual and current 

expected price.  It has been shown by Nerlove and one of the present authors 

[5] that local stability can be established for adjustment systems whore all 

commodities are gross substitutes and expectations are adaptive. In this 

paper, we show that such adjustment systems are globally stable, provided 

that all equilibria are strictly positive. 

We start by proving in Section 2 a general theorem on stability of 

dynamic systems. This theorem if used in Sections 3 and. 5 to prove the 

stability of the systems without and with expected prices, respectively. 

•■ 
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In Section h,  it  is shown, by example, that If we do not assume the exist- 

ence of at least one positive equilibrium, the nonlinear process may lead 

to unbounded solutions. This  possibility does not arise in linear systems, 

where there is always global stability under conditions of weak gross 

substitutablllty, as shown in [2], Theorem 2. 

2. A Theorem on Stability. 

In this section, we consider a general dynamic system, 

(1) dP/dt = H(P) , 

and state a set of sufficient conditions for the stability of Its solutions. 

First we state a lemma which 1B closely related to Lyapunov's "second 

method" for proving stability and which has been used implicitly In several 

earlier papers (see especially [3])« 

Lemma 1.  Constancy of functions on limit paths. Suppose that for any P0 

there is a solution P(t) of equation (l) with P(0) = P0 and that, for 

fixed t , P(t) is a continuous function of P . Suppose further that 

«(P) is a continuous function of P , P(t) any solution of (l), and P*-(t) 

a limit path of P(t) , i.e., a solution of (l) with P*(o) = P*- = a limit 

point of P(t) .  Then if *[P(t)] converges to a limit, say  **■  , 

*[P*(t)] a ** , the identity holding in t . 

Proof; Use the notation P(t|P ) to denote the solution with 

P(0lPO) = P  «By definition of a limit point, there is a sequence  1 t \ 

such that lim  P(t ) = P* .  From the continuity in the starting point 
n -» oo 

and the uniqueness of the solution. 

*        ■'---■ 
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P*(t) = P(t|P») = 11m P[t|P(tn)J = 11m  P[t+t JP(0)J * 11m P(t+t ) . 
n -» oo n -4 oo n -♦ oo 

From the continuity of ♦ ^ 

*[P*(t)J = *[ 11m P(t+t )] =  11m 4[P(t+-t )] « #* , for any t 
n -> oo n -» oo 

Theorem 1. Suppose the system (l) satisfies the following conditions: 

(a) There exists at least one positive equilibrium, that is, a point 

P > 0 for which H(P) = 0 j 

(b) for every positive equilibrium P and every solution P(t) , 

max P,(t) / P  is monotone decreasing and min P.(t) / P  is monotone 
J  J      J j  J     J 

increasing) 

(c) for any P  there is a unique solution P(t) with P(0) = P ; 

further, for fixed t , P(t) is a continuous fiuictlon of P ; 

(d) if P(t) is a solution which has at least one component not 

eventually constant , and P*(t) a limit path of P(t) , then at least one 

eventually constant component of P*(t) is not eventually constant in P(t) . 

Then every solution P(t) of (l) for which P(o) > 0 converges to a 

limit. 

Proof:   Let the vector P have m components.  For any solution P(t) , 

let c be the number of its eventually constant components.  The conclusion 

holds trivially for any solution for wnich c = m . We shall prove it for 

all solutions by backward Induction on c 

Suppose then the theorem is valid for all solutions with c > c 
o 

eventually constant components, and let P(t) be any solution with c 

o 
A component, P.(t) ,, is said to be eventually constant if it is 

J 
constant for all t > t  for some t 

= o o 

■  1 ■■■:       ■■■.    •■.  ■ 
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eventual.ly constant components. Let P be any positive equilibrium. 

From (b) and the assumption that P(o) > 0 ,  we have, for all t > 0 , 

(2)  max P (0) / P > max P (t) / P, > P.(t) / P. > min P (t) / P. 

I 

> min P.(0) / P. > 0 . 

| Since max P (t) / P, is monotone decreasing and bounded from below, it 
j  J   '  J 

i 
must approach a limit. We may therefore define 

  
(3) lim max P (t) / P = |i(P) 

t -♦ oo j  J     J 

! 

A similar remark holds for min P,(t) / P, ; since it is monotone 

increasing from a positive beginning, we can write 

(i+) lim min P.(t) / P. = H(P) > 0 . 
t -»oo J  J      J 

i 

It follows from (2) that P(t) is bounded and hence has a limic 

point P* . Let P*(t) be the solution with P*-(o) = P* . It follows 

from (3), (^), and Lemma 1 that 

j 
(5) max P*(t) / P a £(P), min P*(t) / P. = |i(P) , 

the identity holding with respect to t . 

For all j  such that P,(t) is eventually constant, it is certainly 
J 

convergent. By Lemma 1, Pt(t) is constant (hence eventually constant). 

From (d), P*(t) has at least one eventually constant component that had 

not been eventually constant In P(t) .  Therefore, ehe number of eventually 

»""»«►.- 
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constant eomponents in P*(t) is greater than c , and by the  induction 

hypothesis, 

(6) lim  P*(t) = F** , 
t -»oo 

for some P** ,  which must be an equilibrium (see, e.g., [6], Lemma 1, p. 77), 

If we replace P(t) by P*(t) in (2) and use (k)  and (5), 

p^(t) > P- ü(P) > 0 for all t , so that 

(7)      P**    is a positive equilibri urn. 

By definition of a limit,  lim  P*(t)/P**- = 1 for all ^ , so that 
t -* 00    J J 

(8) lim     max P*(t)/P*-* = 1 =    lim      min P^(t)/P^*    . 
t-*oojJ ^ t->oojJ J 

From (7),  (5) holds with   P ^ P** .    By (8),  then,    fI(P**) = 1 = ^(P**)     . 

If in (?) we replace    P(t)    by    P^(t)    and   P   by    P** , we see,  in view 

of (5),  that    P*(t) = P**    for all    t     .     In particular,  this holds for 

t = 0  ,  so that    P» = P*(0) ~ P**    ,  and hence  (by (7)), 

(9) P*    is a positive equilibrium. 

Since    P*    was any limit point,  the quasi-stability of the system has 

been shown.    However,   from the quasi-ctability and (b),  it will be shown 

that stability in the stronger sense follows.       For by definition of a limit 

point and the positiv!ty of    P*  , there must exist a sequence     It \  such 

Thus,  in the theorem of the following section,  it would have been possible 
to infer stability in our sense from the  results of Uzawa and McKenzie under 
their respective assumptions.     We adopt the present approach partly as a 
variant but mainly because it also supplies a technique for handling the case 
of adaptive expectations. 
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that P.(t ) / P* ^Dproaches 1 for each ^ . Hence, 

(10) lim  max P^t ) / P* = lim  min P4(t ) / P* = 1  . 
t-^ooj^      ^t^ooj^      ü 

But since max P.(t) / P* and min P.(t) / P* both converge, (10) implies 
;    J J «     J J 

that they must both converge to 1. From (2), with P = P* , FAt) /  P* 

converges to 1 for each J_ ,  which demonstrates the conclusion. 

3•  Stability Under Weak Gross Substitutability Without Expectations. 

3.1.  We assume there are m commodities, numbered l,...,m . Let 

P be the vector of their prices and F(P) the vector of excess demands 

as a function of P . We make the following assumptions (see, e.g., [2], 

Sections 1.1 and 1.3): 

(W) P-F(P) = 0 ; 

for each ^ * 1,,..,m , 

(H) F,(P) is homogeneous of degree 0 , 

(C) F,(P) is conclnuous, and 

(B) F (P) is bounded from below; 

and, 

(S) ^/^k > 0 for all j ^ k  . 

■ßie dynamic system we assume is that introduced by McKenzie. We 

assume 

(D.l) P a H (P) if P > 0 or H (P) > 0 , 
J   J        J J 

= 0 , otherwise, 

where, for each J  , 

(D.2) sgn H (P) = sgn F.(P) for all P or H (?) s 0 , the latter 
J J J 

• a 

1.11 'mi .im ■ i' ■ Mr' 
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noldlng for at most one commodity £    . 

The functions H ere  assumed continuous. 

The dynamic system (D.l-2) is formulated to include both numeraire 

and non-numeraire systems  The second part of (D.l) insures that any 

solution is non-negative. Any non-negative (^ 0) initial position is 

possible, except, of course, that the numeraire price must be positive« 

3.2.  In this subsection we show that in studying the stability of 

solutions of (D.1-2) we can confine ourselves to solutions P(t) which 

are positive everywhere so that, in particular, P(o) > 0 .  It follows 

that we can disregard the second part of (D.l). We make use of some lemmas 

proved in [2], 

Lemma 2. Let P(t) be any solution of the system (D.1-2), where F(P) 

satisfies conditions (w), (H), (C), (B), and (S). Then there exists a 

possibly empty set of indices Z and a time t  such that: 

(a) P„(t) = 0 for t > t i v '  Z% ' =0 

(b) Pw(t) > 0 for all t ; 

(<*)    P- = MO. B-(t)] for t > t  j 
Z,   Z    Z = o ' 

(d) sgn H (0, Pj-O = sgn F (0, P^) for J e Z , except for the 

numeraire, if any; 

(e) the function F~(0, P-') satisfies (H), (C), (B), (w), and (s); 
Z    Z 

(f) If P is any equilibrium of the excess demand functions F(P) , 

then P^- is an equilibrium for the excess demand functions 

F~(0, P/v/) In the space consisting only of the commodities in Z z   z 
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Proof: Suppose that on the solution, P(t) , commodity ^ has a zero 

price at some time t, > 0 .  It cannot be that H [P(t, )] > 0 ; for 

then, by continuity, H.[P(t)] > 0 for 0 < t - £ < t < t  . By (D.l), 

P (t) > 0 in this Interval.  Since P^t,- 6) > 0 , P.(t ) > 0 , contrary 

to assumption. Hence 

(11) VP(tl)] i  0  ' 

Since ^ cannot be the numeraire (which can never have a zero price because 

it starts at a positive value and remains constant),it follows from (D.2) 

that F [P(t1)] < 0 , while ^A\)  = 0 • By Lemma 2 of [2], however, if 

F (P1) < 0 for any F1 for which P^ = 0 , then F.(P) < 0 for all P . 
J    = J J   — 

Now define 

(12) Z = j J: P.. (t) = 0 for some t > 0 j  . 

'i'htn ^c ha^t; shown, 

(13) F17(P) < 0 for all P . 

It follows from (D.l-2) that P7 < 0 .  In particular, if P.(t ) = 0 

for some j e Z , then P.(t) ~  0 for all t > t  .  Since this holds for 

each J e Z , (a) holds for some t , and (b) follows by definition of Z . 

By (D.l), (c) follows from (a) and (b), while (d) is a special case of (D.2). 

Finally, that (e) and (f) follow from (13) is precisely the assertion 

of Lemma 3 of [2]. 

3.3. To prove stability with the aid of Theorem 1, we have to establish 

or assume conditions (a)-(d). We will assume (a) and (c) hold. We have 

then to establish (b) and (d).  These assertions, which are dynamic in 

■ •       ■■■"'"■     * ■■ -„   ^   
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character, will be shovm to follow from the following static lemma. An 

analogue of this lemma was proved for the case of gross substitutes in 

the strict sense in fl] (see Lemma 3)> a weaker form was established by 

Uzawa [IJ],  p. 15^ Lemma 2. We make use of some steps similar to these 

In the proof of Theorem 1 of [2]. 

Lemma 3-  If p is a positive equilibrium vector, P a positive dis- 

equilibrium vector, jr(i) any permutation of the Indices l,...,m such 

that 

W5«(j)S (r^-s) p
Ä(J+1)/

?„(J+i) - 

and J is defined as max [ J: F /.)(?) ^ 0 } , then F /^(P) < (resp. 

>) 0 . 

Proof:  As in the proof of Theorem 1 of [2], we may assume without loss 

of generality that P. = 1 for all ^ . Also without loss of generality 

we may suppose the numbering of the commodities such that P. < P 

(j = l,...,m)  .  Define a sequence of price vectors,  P , by the relation 

(HO PS.   = min (P^Pj)  , 

so that, in particular, P is an equilibrium vector (with all components 

equal to P ) and p    = P    .  From (l^) and the conventions Just mad' v?, WP 

see easily that 

(15) Pj - Pj (J < s)  , 

= Ps (J > s)  , 

(16) P'+1 = P. (J < s)  , 

= P8+1 (J > B) 

1 

« |S, 
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Thus a change from P  to P    Involves no change In the first s 

prices and an increase (or at least no decrease) in the last m - s . 

Prom (S), 

*• (PS+X) > FAPB)    (J < s) (17) .j.-  , , ^ 

If we write, P    being positive by hypothesis, 

N 3'  S+l7        ' 

8+1 we see that the last m - s components of QD'rJ" are the seme af those of 

P  while the first e    components are smaller or the same. Hence, by (S), 

F.tcT1) < F^P8)  (J > s)  . J - J 
.s+1. ,8+1 But by (H), F^Q^) = FJ(P

8+-L)  , so that 

(18) 

From (18), 

By induction on s , It follows that 

F^P^1) < (Ps) (J > s) 

F (P8+1) <F.(PS) if J > J > 

F (P^1) < F.fr3) If J > J > J = J 

Since P^ is a positive equilibrium vector, F.(P1 =0 .  If we set 
J 

s = J - 1 , and distinguish the two cases, j = J , j > J , we have 

(19) 

(20) 

FT(P
J) <0 , 

F (P^) < 0 for j > J 

■ ■  ■ ■   ■■"■■■■.  ,..;.. .   . 
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Froin (20), 

5=: *l *<(**) <o - 
j=j+i J j 

,J , /„J- By (W),    XZ*] F.(PJ) = 0    ,  so that 
J=l      J    J 

JZPJ
0F.iPJ)>0    . 

J«l 

From (15),    Pf = P.    for    0 5 J    >  so that 

J        J 

(2i) |lYj(pJ)20 ■ 

From (17),     F.(PS+1) > F (PS)    for    J<J<»     •    By Induction on    s, 
J —       d 

F^P*1) < F.(FS)    for    j < J < s    . 

In particular,  let    s = m    ,  and recall that    F   = P    • 

(22) FjCl^) < F^P)    for    j < J    . 

Finally, by (tf)  , 

The first summation Is non-negative, by (2l).     Each term of the second 

siammatlon is non-negative, by (22).    Finally,    F^P) =0    for    J > J    by 

hypothesis.    Hence, each term in the second summation must be zero,  i.e., 

F^P) = F^P"1)    for    j < J    . 

In particular, let J » J and recall (19). Since F^P) ^ 0 by 

definition, we must have FJ(P) < 0 . 

The other half of the lemma is proved in exactly the same way. 
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3.4.  In this subsection we derive the dynamic Implications nf Lemma 3; 

we shall show that the system (D.l-2) has certain properties which in the 

next subsection will be shown to imply hypotheses (b) and (d) of Theorem 1 

and therefore stability. 

Lemma 4.  Let S be any set of commodities containing the numeraire, if 

any, and P any positive equilibrium.  Then:  (A) For any given time 

interval, if P.(t) is identically constant for all j / S , then 

max (resp., rain) P.(t) / P. is monotonic decreasing (resp., increasing). 
Je6 JeS 

(B) If P.(t) is constant for all t > 0 for all j ^ s , and if max 

(resp., mln) P^t) / P. is constant for all t > 0 , then there    "^ 

exists a commodity k £ S such that 

max (resp., mln) P (t) / P. » P]e(
t) I  pv iov  a11 t 

ufficiently large, 

jeS jes     ■JV'/ '   'J       'kx" '   'k 

Proof: 

(A)    For convenience,  define 

(23) 

(24) 

V(P,P:S) = max P. / P      , 

M(t) = ^:J  S^^t) / P    = V[P(t),  P:  s]  ' 

For any fixed t'  in the interval, let j' be any element of M^') • 

Renumber the commodities in increasing order of P (f) / P.  .  Since this 
J      J 

ratio is the same for all elements of M(tl) , choose the numbering so that 

j'  is the last element of M(t') .  Then P (f) / P. > max P, (f) / P 

:■   ■  -■       .■-...:.. ■      :.   .....    . 
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for J > j' , so that j ^ 3 for J > J'  and therefore P (t) is 

identically constant over the given time interval by hypothesis abou* 

elements ^ S  . By (D.l) and Lemma 2,     for    j > j'   ,    H.[P(t)1 = 0 over 
J 

the interval.  Since, for j > j',  j  cannot be the numeraire (which belongs 

to S }, (D.2) implies that F.[r(+.)] . 0 for all points of the time 

interval and therefore in particular for t', so that 

(25) F.[P(f)] = 0 for j > j'  . 

But now by Lemma 3,    F    [Pit')] < 0    .    Since    j'     was any element of 
J — 

M(f)   , 

(26) FJ[P(f)]<0    for all    jeU{t<)     . 

If I    is the mune'raire, then H S 0 j if not, then from (D.2) and (26), 

HjtPU')] < 0  .  Hence, from (D.l), 

^27) Pj = 0 for a11 J 6 M(t,) for all t'  in the interval. 

By definition of M(t) , V[P(t'), P:S] = V[P(t,),P: M(f)] > P.(t') / P. 
J      J 

for all j £ S - M(t') .  Hence, for t sufficiently close to f , 

(28) V[l(t),P:S] = V[P(t),P: M(t,)]  . 

By definition of M(t)  , 

(29) P^t') / P = V[P(f),P: M(t')] for all jeM(f)  . 

We will examine the right- and left-hand derivatives of    V[P(t),P:S]    at 

t = f     .    From (28)  , 
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(30) VfPCf  + h)  , P:SJ  - V[P(t'),P:S] 

= VfPCf  + h),  P:  M(t,)]  - V[P(t'),P:  M(t')J 

max      P (f  + h) / P.   -      max      P,(t') / P. 
JeM(t»)    J J      jtM(t')    J J 

=      max       [P (f   + h)  -  P.(t')]  / P       , 

from  (29).     For    h > 0  ,  then, 

(31) {v[P(f + h),P:S]  - V[P(t),P:S]) / h 

=      max      [P.(f  + h)  - P.(f )] / (h P  )     . 
jeM(t')      J J J 

If we let    h    approach zero from the right,   the right-hand derivative is, 

then, 

max      P    / P < 0    , 

by (27). Similarly, the left-hand derivative is 

rain  P. / P. < 0  . 
jeM(t') J '  J = 

Hence,   both the right- and Jeft-hand derivatives of    VfP(t),P:S]    exist and 

are non-positive,  so  that    \[P(t),P:S]    is monotone decreasing, while a 

similar argument  ohovs  that 

rain P.(t)  / P. 

is monotone increasing; this is assertion (A). 

(B) By hypothesis, 

(32) V[P(t),P:S] = n , 



say.     If the numeraire    j       belongs  to    M(t;     for some value  of    t  ,   then 

P    / P.     a  ^ and so  the numeraire belongs  to    .M(t)     Tor all     t   ,   so  that 
Jo      Jo 

(B) holds.     Let us now  assume  that  the numeraire belongs to    M(t)     for no 

value of    t     .     For each     t    ,  M(t)    is non-null and so contains a positive 

integral  number of elements.     Choose    t       so  that    M(t   )    has  fewest elements. 0 oo 
For simplicity^  let 

(33) M = M(to)   ,  N = S - M(to)     . 

By construction,     N    contains the numeraire.     By definition, 

(3^) V[P(t),P:S]  = max[v[P(t),P:M),  V[P(t),P:K]] , 

(35) V[?(to),P:M] > V[P(to),P:N]     . 

Consider ary t for which V[P(t),P:M] > V[P(t),P:N]  . From (34), M(t) 

must be disjoint from N and therefore a subset of M .  But. M(t)  cannot 

contain fewer elements than M(t ) , so that 
o 

(36) if    V[P(t),P:M] > V[P(t),P:N]   ,   tnen    M(t)  = M     . 

Suppose    V[P(t),P:N]  = V[P(t),F;3]     for  some    t > to     .     Let    t      be 

the earliest  such    t     .     In view of  (3^)  ririd (35), 

(37) V[P(t),P:M]  > V[P(t),P:N]     for    to < t <  ^     . 

Hence, by (36), M(t.) = M in this interval.  From (32),  P.(t) must be 

identically constant for all j £ M in this interval.  If j e N , then 

j e M or    j / S ;  in either case,  P.(t) is constant in the interval. 
J 

Since N contains the numeraire, we can apply part (A) of this lemma to 

the set N } V[P(t),P:N] is monotone decreaslng in (t ,t ), so that 

: ■■■ll"     ■ ' ' ' ^  :,   '^  '     "    ^ ,„__      ■ '   ^   --- -     ^   , ' -  ^ - 
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VfP(t.),P:Nj < V[P(t  ),P:Nj < V[P(t   ),P:M]  = M - V^t. ),P;S]     , 
J- = o o i 

by (35),   (3J0,  and (32),  contradicting the definition of    t     .    Hence, 

V[P(t),P:Sj > V[P(t),P:N]    for all     t > t      ; 

from (3k)  and (36), M(t) = M(t ) for all t > t  .  Therefore (B) holds 

for any k e M(t ) . 

Again the argument for the minimum is entirely parallel. 

3.5'  The proof of stability is now an easy consequence of Theorem 1 

and Lemma h. 

Theorem 2.  If F(P) satisfies (W), (H), (c), (B), and (s), and if it 

possesses a positive equilibrium, then th'j dynamic system defined by 

(D.l)  P, = H.(P) if P, > 0 or H,(P) > 0 , 
,1   J        J j 

where 

(0.2) 

0 otherwise, 

jgn H (P) = sgn F.(P) for ail P or H (?) s 0 , the latter 

holding for at most one ^ , 

ij globally stable in the sense that every solution converges, provided 

the solutions are unique and continuous in the starting point. 

Proof:  By Lemma 2, we can assume that P = H(P) and that P(0) > 0 . 

Conditions (a) and (c) of Tnec "em 1 have been assumed here; it remains to 

demonstrate (b) and (d). 

If we let S be the set of all commodities } .. ■, ,:m }  then assertion 

A of Lemma 1+ is hypothesis (b) of Theorem 1. 

S _  J"    II-    5 ■ , ■ te m   ■        ■     ■ ■ '>*m$mmimM***.ex 

"   - 



■'■:Sir- ■ 

■19- 

Ib verify (d) of Theorem 1,   let C be the set of components of P(t) 

which are eventually constant otlier than the numeraire, if any.  Then for 

t sufficiently large,  C satisfies the conditions for the set S in 

Lemma k  (assertion A), so that 

and 

max    P.(t)  / P.    is monotone decreasing, 
jeC      J J 

min    P.(t)  / P.    is monotone increasing. 
JeC      J J 

Since    max    P.(t) / P.  >    min    P.(t) / P    > 0    ,   both functions  are bounded 
j<#J J~JeCJ J~ 

and hence convergent. 

Let    P*-(t)    be a limit path of    P(t)  .     Then,  by Lemma 1, 

(38) max    P*(t) / P.   =   ]I   ,  min    P*(t) / F.   = ^    , 
jcC      J J JeC      J J 

for  suitably chosen constants    M-  ^  if 

Also,  by definition  of the  set    C     ,   P.(t)     is convergent  for    j   e C 
J 

Again by Lemma 1, 

(39) P*(t)  is identically constant for j t C  . 

If |i = (i  , then P^(t) would be constant for all j in C  , from 

(38)-  In conjunction with (39), all components of P*(0 would be constant, 

so that (d) would certainly be satisfied. 

Otherwise,  M > u  .  From (38), (39)^ and Lemma h,  assertion (B), 

there exist commodities j', j"  such that 

[hO) P*,(t) / P = ü , P»„(t) / P.,, = M , for t sufficiently large. 
J J J J        ^ 

-  i ■ 

I  *■ 
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Both J» and J" are eventually constant.  They cannot be the same, since 

|i > ^ , and therefore they cannot both be the numeraire. Hence at least 

one was not eventually constant along P(t) . Hence (d) follows, completing 

the proof of Theorem 2. 

'4.  An Example of Instability in the Absence of a Positive Equilibrium. 

When there is gross substitutability in the strict sense, there must 

be a positive equilibrium (^ee [1], p. 86, corollary to Lemma l).  However, 

(S) in its present form is not sufficient ic  guarantee this, so the assumption 

of a positive equilibrium is P.- additional one.  Further, it will now be 

shown by means of an example, that Theorem 2, at least in its present form, 

would not remain valid if this assumption were dropped. 

Suppose there are two commodities, with excess demand functions, 

(^1) F1(P) = P^/PI  ,  F2(P) = - P^  . 

These excess demand functions satisfy the conditions (w), (H), (C), and (s). 

They do not satisfy (B) as they stand; however, we can regard (^l) as valid 

only for P?/P, < 1 ,  and define the excess demand functions for PjP,   >  1 , 

by 

Fl = 2 (VPl) - 1 ' F2 = (Pl/P2) " 2  ' 

The modified functions satisfy all conditions.  In the example, we shall 

only need the definition of the functions in the region,  Pg/P, < 1 . 

Note that the only equilibrium points are those for which P = 0 , 

P, > 0 . Hence, there is no positive equilibrium. 

We now define the adjustment process. Let 

{\2) *(u) = 2u e"1^  . 

 -^~ — ,.-. iMagmtjjtmn^j Kmammm 
: ■ '   ■"»-'■ -     ■ .■■.-. -        - 
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This function is zero when    u = 0    and positive for all positive values 

of    u    ,  approaching infinity as    u    approaches infinity.    By differ- 

entiation!,  it is easy to  see  that    9    is  strictly increasing.     Hence,   it 

has a well-defined inverse    tiv)    defined for all  non-negative    v    with 

(i+3) sgn \|f(v) = sgn v     . 

We now let 

(kk) H^P)  = KP2/
P1^  K2(P) =  "  V13!  = F2(P)     ' 

From (kl),     sgn F = sgn (P /P ) ; hence from (J+3) and (kk),   sgn F^^ = 

sgn Hn . while the condition, sgn F0 = sgn H0 , is trivially satisfied. 
-L d c.    ' 

In fact, since H = t( i/^-i ) ,  H  and H  are actually monotcnic 

increasing as well as sign-preserving functions of F,  and Fp , respect- 

ively. 

The dynami-! system,  P = H(P)> can be written, in view of the definitions, 

as 

Oo) ^(P^ = P2/P1 y\ 
It is easily verified that the pair of functions 

P (t) = /tTI , P, (.t) 
■2 .„/t+l 

•a e 

■'.' 

constitute a solution of (^5).  Along this path,  P (t)/P (t) < e '' < 1  , 

so that confining ourselves to (it-l) involved no loss of generality.  But 

then P-^t) approaches infinity and so the solution is not convergent 

in the usual sense. 

Neverthele^n it must be noted that there is a kind of convergence, 

for Pp(t) approaches zero, so that the solution does approach the set 

_ jk _,  
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of equilibria (which includes all points with P0 =-- 0 ).  Put slightly 

differently, the relative prices converge, though the absolute prices are 

in part unbounded. 

5-  Stability Under Expectations. 

5-1 •  We now suppose that the demand for commodities depends on both 

current prices and future expected prices.  Let current prices be denoted 

^y PJ. (J = l,...,m) ,  while expected future prices are denoted by 

P. (j = m-»-l,...,2m) , where P.   is the expected future price of commodity 

H    .    The vector P will have 2m components; we will also write P  for 

the vector of current prices, P, ,...,P  and P  for the vector of future 

prices. 

Given the vector P , each individual, and therefore the market, 

determines a 2m-vector of excess demands,  F(P) .  The first m components, 

F(P) = F^P%P ) , are excess demanda for current goods.  The last m 

components, F^(P) , are planned excess demands for the future=  In the 

absence of futures markets, these planned excess demands can have no 

influence on prices.  We will then suppose that the dynamic relations 

(D.I-2) of Section 3 apply only to current prices: 

That current and planned excess demands depend on current and expected 
prices is, of course, a standard doctrine; see, e.g., Hicks [10] or Lange 
[11].  These works did not, however, have aji explicit formulation of 
stability as related to price adjustment.  Patinkin [1^], Chapters IV, X, 
and their Appendices, and Enthoven [8] have formulated dynamic models in 
which current excess demands influenced current prices but planned excess 
demanda had no relevance to price movements.  As here, it becomes necessary 
to introduce expectational assumptions; Patinkin uses static assumptions, 
Enthoven an assumption of extrapolation from current values oa the basis of 
the current rate of change. 

■ 

r 
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(DE.l) P - H (P) if P. > 0 and H (P) > 0  , 

= 0 otherwise, 

for j = 1,...,m , 

where 

(DE.2) sgn H.(P) = sgn P (P) or H.(P) s 0 , the latter holding for at 

most one j 

Since t      enters into F"^ ,  this dynamic theory is not complete.  It 

is necessary to postulate t^at P'" is determined by the expectations of the 

market, which in turn will he determined by past experience in some way.  We 

shall adopt here the hypothesis of adaptive expectations (see Section l), 

which can be written 

(DE. 3) P = a. ÄV        - P ) for j = m+l,...,n , where a. > 0 . 
J       J   J "*"*       J J 

If there Is a numeraire, j  , then we can assume that the market has 

a perfect expectation of its price.  This can be achieved without modifying 

(DE.3) by assuming that for any solution the starting values,  P, (ü) and 
Jo 

P.   (o) , are the same. 
Jo+ni 

Remark 1.  We do not have to worry about the expected prices becoming 

negative.  From (De.l),  P.(t) > 0 for ,j < m .  Then if P (t) = 0 for 
J    - — J 

some j > m , P  (t) > 0 , so that, from (DE.3),  P. > 0 . 
j *""•   — j — 

A point P satisfying the conditions, 

F^P) < 0 , P1-F1(P) = 0 , P1 = P2  , 

is necessarily an equilibrium of the dynamic system (DE.1-3).  We shall 

postulate that there exist competitive equilibria with respect to the entire 

set of excess demand functions (including those for future goods) for which 

:  , .1 

^___________^___^__^^_ 
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current and future expected priccc axe equal; these will be termed, stationary 

equilibria.  This assumption could be deduced from some stationarity condi- 

tions on the excess demand functions or the utility functions underlying them. 

For such an equilibrium, by definition, 

F(P) < 0 , P1 = P2  , 

and,  by (w),    P-F(P) = 0 = P1-F1(P)+P -P^P). Since each terra is non-positive, 

P  'F^P) = 0    ,  and so,  by the previous remarks,  a stationary equilibrium is 

an equilibrium of the dynamic  system (DE.1-3). 

We shall in fact postulate the existence of stationary equilibria not 

only for  the original  system but also  for all systems formed from it by 

combining a set of commodities into a composite commodity. 

(SE)    There exists    P1    such that    F(P1,  P1) < 0 ;   further,  if we define, 

for a given set of commodities    S    and a given weight vector     ^    , 

G.Cpi^p1,??,?2)  = F^P^p1  TV^,   P^,r2  JW)     for    j   €  S 
j    S^  o    So' y  3'  o   yg'    S'o    TS' 

or    j   -  m e  S   , 

0 (PI.p  ,Pt,,p   )  = y-   rt,F.(Fi;,p    JW,  P^JP    ^a.)   , o    So' S'  o'      4-7~   j  j    So   ^    So    s'   ' 
J ^D 

(£{^1 ,pl ,pi ^)  = T~ n.F.     (P^p1  n^jP2^2  n^)     , oX   Q'^o'  S'  o'      *-»    j  j+nr   S'  o    'g'   s    0    s 

so that we are  forming a composite cüramodity from a  set    S    of the current 

commodities and another composite commodity  from the  corresponding  set of 

future commodities,   then  there exists    P_,,  p       such that 
S' o 

GCP
1
,^,!?

1
,^) < 0 . 

To simplify matters, we ignore (unlike in the previous parts of the 

paper) the difficulties of corner equilibria by postulating positive demand 

for free goods. 

m ■■ '■■-■■■': m '•■ ■■'■' ■■ 
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(PF)  if P . 0 , then F (P) > 0  (j = l,...,ra)  . 
J J 

Remark 2.  From (PF), ve cannot have P. = 0 for any ^ in (SE). 
J 

Hence, we certainly have a positive equilibrium, and condition (a) of 

Theorem 1 is fulfilled. Also, the second line of (DE.l) becomes super- 

fluous, for suppose P.(t) = 0 for some t > 0 , and j < m  .  Then 

F. > 0 , while commodity j cannot be a numeraire, and therefore H. > 0 . 
J *■ J 

Further, then P.(t) > 0 , so that P (t - £) < P (t) for £ sufficiently 
J J J 

small.  Since P.(t-£)>0,  P.(t)>0  ,  Hence, we can assume that 
u ^ J 

P(0) > 0 without loss of generality. 

Finally, we will assume as before that the functions F(P) satisfy 

all the conditions (W), (H), (C), (B), and (S). 

5.2.  Theorem 3.  Under the assumptions of Section 5.1, the dynamic 

system defined by (DE.l-3) is globally stable in the sense that every 

solution converges, provided the solutions are unique and continuous in 

the starting point. 

Proof;  As before, we use Theorem 1. Hypothesis (a) is implied by 

assumption (PF) (see Remark 2 of 5.l); hypothesis (c) is explicitly stated. 

It remains to verify hypotheses (b) and (d). 

By (SE) and (PF), we can choose a positive equilibrium P with 

(1^6) P = P    (j = l,...,m)  . 
J    .3+m 

Suppose j_ is such tnat 

(V7) PjU) / P. = max Pk(t) / Pk  . 
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If    J < ra ,  we may apply Lemma 3;  we must have    F [P(t)] < 0    and there- 

fore    H.[P(t)] < 0    .    If    j > m ,  then, by assumption, 

From (46),    P (t) > P      (t)  ,  and by (DE.3),    P (t) < 0    .    Since this 
J —    J ~m j ■ 

holds for all    ^    for which (kj) holds,  it follows from the proof of 

Lemma 4(A) thao 

(W) max ^k^^ / Pk is monotonic  decreasing. 

An exactly parallel argument applies to min P, (t) / P,  , so that 
k  k 

hypothesis (b) of Theoram 1 is verified. 

We have finally to verify hypothesis (d) of Theorem 1. As in the 

proof of Theorem 2, we let C be the eventually constant set of 

components of P(t) other than the numeraire.  Let 

C^ = |_J: J < ra , j e C j , C2 = j^j: j < m , j+m e C . 

The set C is completely determined by C  and C  .  If J e C , 

then from (DE.3), P.(t) = P.  (t) for t sufficiently large; since 
J J+ni 

P,     (t)    is constant for    t    sufficiently large, by definition,  we must j+ro — 

have    j e C,   . 

c2c01   . 

Let P*(t) be a limit-path of P(t)  . We must show that at least one 

element not eventually constant on P(t) is eventually constant on P*(t) . 

We consider two cases. First suppose that there is at least ore j_ in C, 

but not in C, Since P,(t) is constant for t sufficiently large, 

1 1 
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the differentiaj. equation (DE.3)^ with ^    replaced by J+m ,  becomes a 

single differential equation with a stable solution, so that P.-^Ct) 

converges.  Then by Lemma 1, ?¥-_.(*) Is constant. Since J did not 

belong to C  , this means there is at least one more eventually constant 

component in P*(t) than in P(t)  . 

Nov suppose that C, = Cg .  For t sufficiently large, P.(t) and 

P.  (t) are constant for j e C.  . From (DE.3)^ we must have 
J+mv 1 

P (t) = P  ft)  • Let the common constant values form a vector, n„ 
y        j+m^ • c1 

By Lemma 1, we must also have 

P*(t)   HP*      (t)   =   n.      (J   €   C-.)      . 

Now form all the commodities in    C,   ,  together with the numeraire,  if any, 

into a single composite commodity.     Let    V   be the regaining current 

commodities.    Call the new set of excess demand functions    G(P)  ;   they are 

defined as In the  statement of assumption (SE).     The corresponding dynamic 

system is 

0+9) cLPj/cLt = H^P) = H^PjSr ,   nc  ,  F§ ,   ^  )       (j  e V)     , 

dP.    /dt = a.     (P.  - P.     )      for    j  e V     . 
j+m7 j+mv   j j+m7 

The system (1+9)  is satisfied by    P(t)  ,  for sufficiently large,  and 

P*(t)     .     It also satisfies all the conditions of the Theorem,  in view of 

(SE),   SO that we can conclude that (kQ) holds for this system.     Let    W   be 

the variables of  (^9)    (including the composite numeraire).    Then, by Lemma 1, 

(50) max P*(t) / P.  = ^ , min P*(t) / F S \x    . 
keW    J J J 

■••■:■-. .- ■' 
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In the next subsection (5.3)> we will demonstrate (Lemma 5) that from (50), 

we can Infer the existence of J' , J" e W such that 

(51) P*,(t) / P. s ^ P*(,(t) / Pj SM , 

If    jl • ji ,  then    P*(t)    must be constant for all    J   e W   and therefore for 
o 

J e C,  or ^ such that J - m e C  . Since the other varlaoles are 

certainly constant, then all variables are constant and (d) is satisfied. 

If ]I > £ , then j' and J" are distinct and cannot both be the 

composite numeraire. Neither j' nor j" belong to C so that (d) is 

again verified. 

5.3. We have only to prove the following lemma: 

Lemma 5. If max (resp.>min)P,(t) / P. is identically constant, then 

j        J  J     J 

there is some j'  such that 

P.,(t) / P. « max P.(t) / P  for t sufficiently large. 

Proof;  Suppose not. 

(52) max P^t) / P^ = ]I . 
d 

Then in particular, 

(53) P.(t) < 11 P,     in some time interval,   for    j < m 
J J 

From (DE.3), 

(5M PJM1(t) - e'Vi^^o) + aj   £   e^8 P^s) ds)    . 

Since,  by (52), 

P,     (O) < TI P,   ,  P,(s) < "JI P,    for all    s     , 

'^^■I-.       1. I"   '    ^"Il '        l^llll-'l   "     IIIIMI 
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it follows from (5k) that 

-M __ 
PJ+ffl(t) < e    ^  r., o [M P.  + a.. ^Z 

t      as 
e J ds] . jl P.     . 

oo J 

(indeed, P  (t) is in effect a weighted average of P. (o) and past 

values of P (c).).  Further, the strict inequality holds if TAn)  < M P. 

over some s-interval.  In view of (53)^ we can conclude 

(55) P. (t) / P, < £ for all t sufficiently large. 

Let 

(56) M(t) = Jj: P^t) / Pj = M|, F = |j: j >m j . 

From (56), (55) can be written 

(57) M(t)    is disjoint from    F    for    t > t      , 

for suitable    t o 

Among values of    t > t      ,  choose    t      so that the number of elements 

of    M(t)    is minimal.     Let 

(58) M = M(c1)  , N =|j:   j <m ,  j^M]. 

Suppose V[P(t) , P: M] > V[P(t); P: N] . In view of (5?;, ic follows 

that M(t) c M . But for t > to , it follows from the choice of ^ that 

M(t) cannot be a proper subset of M . 

(59) If V[P(t), P: M] > V[P(t), P: N] , then for t > to , M(t) . M . 

Suppose for some t > t , 

V[P(t) , P: M] = V[P(t) , P: N] . 

|.i,:.^., ■...„,-:■,.;.• . .  - .-.  
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let t  be tfce smallest such t . Tixen,  since V[P(t1), P: Ml >V[F{t1),f'.  H] 

by definition of t, , we must have tg > %.   ,  and 

(60) V[P(t), P: M] > V[P(t), P: N] for ^ < t < t2 , 

(61) V[P(t2), P: M] - V[P(t2), P: I]  . 

Let 

(62) N(t) = jj: J e N , P^t) / P. = V[P(t), P: N] }  . 

From (59) and (6o), M(t) = M for ^ < t < t  . In a sufficiently 

small left-hand neighborhood of t0 , it follows from (6l) and (55) that 

P (t) / P  has a greater value for J e N(t) than for J > m . Hence, 

if the commodities (present and future together) are ranked in increasing 

order of P (t) / P , the elements of M will be the highest, those in 
J     J 

N(t) the next highest. 

At the same time, If v contained the numeraire, the conclusion of 

the lemma would hold, contrary to supposition. Since P,(t) / P = ^ for 

j £ M for t < t <- tp , P,(t) Is Identically constant over this interval, 

so that H.[P(t)] *  0 . Since j, is not the numeraire, 
o 

(63) Pj[P(t)] s 0 for t^ < t < t2 . 

In view of the ranking found in the preceding paragraph, it follows 

fny-n (63) and Lemma 3 that F [P(t)] < 0 for all j e N(t) . This implies 

that H [P(t)] < 0 for all j e N(t) , and hence, by the reasoning used 
J 

in the proof of Lemma ^(A), 

V[P(t), P: N] is monotone decreasing in a left-hand neighborhood of tg . 

But then it is Impossible, as implied by (60) and (6l) that 

VlP(t), P: i] <T» for t < t2 , VlPO^) , P: N] « U . 

-r—--    ■»—*^.,.^_..:..   ,  __ 
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